In vitro culture of rat hair follicle stem cells on rabbit bladder acellular matrix
نویسندگان
چکیده
BACKGROUND The aim of this work was to create a xenogeneic cell scaffold complex with rabbit bladder acellular matrix and rat hair follicle stem cells, to study the feasibility of construct tissue engineer bladder through biocompatibility of hair follicle stem cells and heterogeneous bladder acellular matrix. MATERIAL AND METHODS New Zealand rabbit bladder acellular matrix was prepared. Scanning electron microscope and Masson staining were used to analyse the acellular material. Two-steps precipitation method was used to place the third generation of hair follicle stem cells onto the surface of the bladder acellular matrix. The in vitro cell growth on the scaffold complex was regularly monitored through an inverted microscope. Cell growth curve was established and histological examination and scanning electron microscopic were used to analyse the progresses of the cell growth on the matrix material. RESULTS The prepared bladder acellular matrix was white, translucent and membranous. It possessed a fibrous network and collagen structure without any significant cell residues as displayed by the scanning electron microscope, and Masson staining. After 48 h of culture, observation by inverted microscope showed that the hair follicle stem cells grew well around the bladder acellular matrix. After 1 week of culture, scanning electron microscopy showed that the hair follicle stem cells spread and adhered on the surface of the scaffold. CONCLUSIONS The in vitro culture of rat hair follicle stem cells and the rabbit bladder acellular matrix possessed a good biocompatibility, which provides a good experiment support for hair follicle stem cells to repair the bladder defects disease.
منابع مشابه
The histocompatibility research of hair follicle stem cells with bladder acellular matrix
BACKGROUND Hair follicle stem cells (HFSCs) were reported to have multidirectional differentiation ability and could be differentiated into melanocytes, keratin cells, smooth muscle cells, and neurons. However, the functionality of HFSCs in bladder tissue regeneration is unknown. METHODS This study was conducted to build HFSCs vs bladder acellular matrix (BAM) complexes (HFSCs-BAM complexes) ...
متن کاملجدا سازی، کشت و تمایز سلولهای بنیادی فولیکول موی موش صحرایی به سلولهای عصبی
Background & Aims: Throughout life, stem cells make new cells in various tissues. Bulge region of hair follicle indicated as sources of stem cells for along times but little studies done in vitro to characterize rat bulge hair follicle stem cells. Materials &Methods : In this study bulge cells of rat hair follicle were isolated and were cultured, then morphological features of differentia...
متن کاملAugmenting Peripheral Nerve Regeneration Using Rat Hair Follicle Stem Cells (rHFSCs) in Rats
Introduction: Nowadays, cell therapy is the most advanced treatment of peripheral nerve injury. The aim of this study was to determine the effects of transplantation of hair follicle stem cells on the regeneration of the sciatic nerve injury in rats. Methods: The bulge region of the rat whisker was isolated and cultured. Morphological and biological features of the cultured bulge cells were ob...
متن کاملEffect of Neurotrophin-3 on Differentiation of Rat Hair Follicle Stem Cells into Neural Like Cells
Purpose: The aim of this study was to evaluate the effect of NT-3 on the decrease of the differentiation time of bulge stem cells of rat hair follicle from neuron like cells.Materials and Methods: The bulge region of the rat whisker was isolated from and cultured in DMEM/F12 supplemented with epidermal growth factor (EGF) in 3 groups for 7, 8 and 9 days .Then 10 ng/ml NT-3 was added to each gro...
متن کاملNeuronal Differentiation of Rat Hair Follicle Stem Cells: the Involvement of the Neuroprotective Factor Seladin-1 (DHCR24)
Background: The seladin-1 (selective Alzheimer disease indicator-1), also known as DHCR24, is a gene found to be down-regulated in brain region affected by Alzheimer disease (AD). Whereas, hair follicle stem cells (HFSC), which are affected in with neurogenic potential, it might to hypothesize that this multipotent cell compartment is the predominant source of seladin-1. Our aim was to evaluate...
متن کامل